Higher Topics

Unit 1

1. The straight line

Distance formula
Mid-point formula
Converse of Pythagoras
Angles in a triangle - largest angle opposite longest side
Gradient formula
$\mathrm{m}=\tan \theta$
parallel lines have the same gradient
lines with the same gradient are parallel
gradient of line parallel to x -axis is zero
gradient of line parallel to y-axis is undefined
positive and negative gradients
Finding angle between line and positive direction of x -axis
Using gradients to show points are collinear
Perpendicular lines $m_{1}=-\frac{1}{m_{2}}$
Right angled triangles and perpendicular gradients
Does a point lie inside, on or outside of a circle
Equation of a straight line: gradient m and y-intercept c
Linear equation $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
Line with gradient m through the point $(\mathrm{a}, \mathrm{b}): \mathrm{y}-\mathrm{b}=\mathrm{m}(\mathrm{x}-\mathrm{a})$
Median of a triangle
Altitude of a triangle
Finding equation of a median
Finding equation of an altitude
Intersecting lines - simultaneous equations
Bearings - shortest distance from a line to a point is perpendicular from point to line

2.1 Composite and Inverse Functions

Definition of a function
Notation
Domain and range
Function Definition- For every x in domain there is only 1 value of f in the range
Find formula for $g(2 x)$ and $g(x+1)$
For what values is a function undefined
Tricks with $\mathrm{g}(\mathrm{x})$ and $\mathrm{g}(1 / \mathrm{x})$ and $\mathrm{g}(\mathrm{x} /(1+\mathrm{x}))$
Composite functions $f(g(x))$ and $g(f(x))$
Functions and inverses - one to one mapping
Notation for an inverse f^{-1}
Checking if an inverse exists from a graph - the ruler test
Calculating inverse functions $-\mathrm{y}=2 \mathrm{x}+5$
Reflection in the line $\mathrm{y}=\mathrm{x}$

2.2 Algebraic Functions and Graphs

Completing the square - simple, negative x^{2} and non unity x^{2}
Maximum and minimum values
Value of x for which it occurs
Sketching the graph by completing the square
Find max or min and value of x at which it occurs

Find roots (zeros) - (put y $=0$)
Find y intercept (put x = 0)
Can find turning point from axis of symmetry
Sketching graphs of related functions
$y=f(x) \quad y=-f(x) \quad y=f(-x)$
$y=f(x+a) \quad y=f(x-a)$
$y=f(x)+a \quad y=f(x)-a$
$y=a f(x) \quad y=f(a x)$
Marking the image points
The exponential function and its graph
$f(x)=a^{x}$ where $a>0$
when $\mathrm{a}>1$ then increasing function
when $0<a<1$ then a decreasing function
$y=a^{x}$ always goes through $(0,1)$ because $a^{0}=1$
Look for the point $\mathrm{x}=1$ on the graph

$$
\text { then } \mathrm{y}=\mathrm{a} \text { since } \mathrm{a}^{1}=\mathrm{a}
$$

The logarithmic function and its graph
$y=a^{x} \Rightarrow x=\log _{a} y$
Look at reflection in the line $\mathrm{y}=\mathrm{x}$
Two special logarithms

$$
\begin{array}{ll}
\log _{a} 1=0 & \log 1 \text { to any base }=0 \\
\log _{a} a=1 & \log \text { of a number to that base is } 1
\end{array}
$$

Sketching graphs of logarithmic functions
Use two special points when $\mathrm{x}=1$ then $\mathrm{y}=0$ and when $\mathrm{x}=\mathrm{a}$ then $\mathrm{y}=1$
Finding the equation of the graph from points on the garph
Finding the values of a and b in the equation $y=a \log _{4}(x+b)$ from the graph
Use simultaneous equations

2.3 Trigonometric Functions and Graphs

Radian measure
Changing degrees to radians
Changing radians to degrees
checking your calculator
Exact values Table using surds
Angles of all sizes in radian measure
New definition for sin, cos and tan
ASTC
Expressing π as $4 \pi / 4,6 \pi / 6$ etc
Sketching trig graphs: $y=a \sin n x$ and $y=a \cos n x$
a gives max and min values
n gives number of cycles in 360°
Period of graph is $2 \pi / n$
Finding co-ordinates of max turning point for $\mathrm{y}=3 \sin (\mathrm{x}-\pi / 3)$
Solving trigonometric equations

```
\(2 \sin \mathrm{x}=1\)
\(\sqrt{ } 2 \cos \theta+1=0\)
\(\sin 3 x=-1\)
\(2 \sin ^{2} x=1 \quad\) ( 4 solutions)
\(4 \sin ^{2} x+11 \sin x+6=0\) (quadratic equation in \(\sin x\) )
\(\sin ^{2} x-\cos ^{2} x=1\) (using \(\sin ^{2} x+\cos ^{2} x=1\) )
\(\sin (2 x+\pi / 4)=1\)
```


3.1 Introduction to Differentiation

Definition of the derivative
Meaning of the derivative
The limit formula
First Principles
Rules for differentiation

$$
\begin{array}{lll}
\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathrm{n}} & \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1} & \\
\mathrm{f}(\mathrm{x})=\mathrm{x} & \mathrm{f}^{\prime}(\mathrm{x})=1 & \\
\mathrm{f}(\mathrm{x})=\mathrm{cg}(\mathrm{x}) & \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{cg}^{\prime}(\mathrm{x}) & \text { where c is a constant } \\
\mathrm{f}(\mathrm{x})=\mathrm{c} & \mathrm{f}^{\prime}(\mathrm{x})=0 & \text { where c is a constant } \\
\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\mathrm{h}(\mathrm{x}) & \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})+\mathrm{h}^{\prime}(\mathrm{x})
\end{array}
$$

variables may be denoted by letters other than x , such as $\mathrm{u}, \mathrm{v}, \mathrm{s}, \mathrm{t}$, etc.
Methods (templates)
simple powers of $x \quad x^{5}$
simple powers of x with a multiplier $3 \mathrm{x}^{4}$
powers of x with 2 terms $\quad x^{2}+x$
powers of x with 2 terms and multiplier $5 x^{2}+3 x$
Trinomials with and without multipliers $\quad 1 / 2 x^{2}-x+3$
Brackets (multiply out brackets first) (x+2)2
More involved brackets
$(2 x-4)^{2}$
Pairs of brackets
$(2 x+3)(x-1)$
Polynomial expressions
$2 y^{3}-3 t^{2}+5 t-4$
Vary the variables
$\mathrm{u}, \mathrm{t}, \mathrm{v}, \mathrm{s}$ etc.
Evaluating $f^{\prime}(a)$ given a e.g. $f^{\prime}(0) \quad f^{\prime}(-1)$ etc
Reminder of what the derivative is: The gradient function
What does the gradient function mean
The gradient (steepness) of the curve at that point
The gradient of the tangent to the curve at that point.
Find the gradient of the curve $f(x)$ at $x=a$
Linking the rate of change to the gradient
Finding the rate of change of f with respect to x at $x=2$
or the rate of change of x^{2} at $x=3$
Reminder of rules of indices:

$$
\begin{aligned}
& a^{m} \times a^{n}=a^{m+n} \quad a^{m} \div a^{n}=a^{m-n} \quad\left(a^{m}\right)^{n}=a^{m n} \\
& a^{0}=1 \\
& a^{-m}=\frac{1}{a^{m}} \\
& a^{\frac{1}{n}}=\sqrt[n]{a} \quad \text { in general } \quad a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
\end{aligned}
$$

Expressing fractions and roots in straight line index form
Writing indices in positive index form
Simplification
Evaluating indexed expressions e.g. $t^{\frac{1}{3}}$ when $t=-8$

Multiplying out brackets with fractions and indices e.g. $y^{\frac{1}{3}}\left(y^{\frac{2}{3}}-y^{\frac{1}{3}}\right)$ or $\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}$
Rules of differentiation for negative and fractional indices

$$
\begin{array}{ll}
f(x)=x^{n} & f^{\prime}(x)=n x^{n-1} \\
f(x)=c g(x) & f^{\prime}(x)=c^{\prime}(x) \\
f(x)=c & f^{\prime}(x)=0 \\
f(x)=g(x)+h(x) & f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)
\end{array}
$$

Methods (templates)

$$
\begin{array}{lc}
\text { simple negative powers of } \mathrm{x} & \mathrm{x}^{-2} \\
\text { simple fractional powers of } \mathrm{x} & \mathrm{x}^{3 / 2} \\
\text { simple negative fractional powers of } \mathrm{x} & \mathrm{x}^{-1 / 2} \\
\text { when in fraction form of a power } & \frac{1}{x^{3}} \\
& \frac{1}{\sqrt{x}} \\
\text { when in fraction form of a root } & \frac{1}{\sqrt[3]{x^{4}}}
\end{array}
$$

Dealing with constants - multipliers

Dealing with constants - divisors

$$
\frac{1}{2 x}
$$

Dealing with multipliers and divisors

$$
\frac{3}{2 \sqrt{x}} \text { or } \frac{2}{5 x^{2}}
$$

Sums of expressions

$$
1+\frac{1}{\sqrt{x^{3}}}-x^{2}
$$

Dealing with quotients $\quad \frac{x^{4}+2 x^{2}+3}{x} \quad \frac{(x+2)^{2}}{x^{2}}$ or $\frac{(x-3)(x+2)}{x^{3}}$ Dealing with brackets and fractions $\quad\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}$

Brackets with a fractional index multiplier $x^{\frac{3}{2}}\left(x^{\frac{1}{2}}-x^{-\frac{1}{2}}\right)$ or $\sqrt[3]{x}\left(1+\frac{1}{\sqrt[3]{x}}\right)$
Leibniz notation dy/dx
Formal proof
Using $d y / d x$ as the notation for differentiation

The form $\frac{d}{d x}\left(2 x^{2}+1\right)$ also $\mathrm{d} / \mathrm{du} \mathrm{ds} / \mathrm{dt}$ etc.

Sketching graphs of derived functions
Look for turning points
mark as zero on the axes
Look either side of t.p. for gradient - mark above or below axes join up points to obtain derived function

Given the derived function - sketch a possible function it could have come from.

3.2 Using Differentiation

Increasing functions
stationary points
stationary values
maximum and minimum turning points
points of inflexion
Look at gradient pattern around these points

If $(a, f(a))$ is a stationary point, then $f^{\prime}(a)=0$,

so a is a root of the equation $f^{\prime}(x)=0$
and $f(a)$ is a stationary value of a.
The nature of a stationary point can be determined by finding the sign
of $f^{\prime}(x)$ to the left and right of $x=a$. of $f^{\prime}(x)$ to the left and right of $x=a$.

Notation SP, SV, TP, PI as acceptable abbreviations.
Finding the stationary point of a parabola and determining its nature
Differentiate
For a SP, dy/dx = 0
Solve to find x co-ordinate,
Substitute in y (or $f(x)$ to find y value
Determine its nature with table of signs
Finding the interval on which $f(x)$ is deceasing or increasing
Curve sketching
Determine:
Points of intersection with x and y axes
Stationary points and their natures
Behaviour of y for large positive and negative x
Any other useful points on the graph
Maximum and minimum values on a closed interval
These can occur at end points or at stationary points in the interval
Closed intervals [4,3] includes end points $4 \leq \mathrm{x} \leq 3$
Open Interval $(4,3)$ does not include the end points $4<x<3$
Problem solving - Optimisation
Finding an expression involving 2 variables
Eliminating a variable using a constraint (given)
Forming a single independent variable expression
Differentiation
Find SP
Find SV (if required)

- the y co-ordinate or the value of $f(x)$ from original expression Determine its nature using table of signs
(or second derivative)
Answer any further requirements of question by calculations
Some examples here would be useful
Rates of Change
Rate of increase, Rate of decrease rate of decrease requires a negative sign
Review direct proportion $\mathrm{y}=\mathrm{kx}$ and inverse proportion $\mathrm{y}=\mathrm{k} / \mathrm{x}$
Forming expressions and obtaining the rate of increase/decrease
Evaluating the rate of change (increase/decrease)
Velocity and acceleration
Velocity $=$ rate of change of displacement wrt time $v=d x / d t$
Acceleration = rate of change of velocity wrt time $a=d v / d t$
Calculation of acceleration, velocity by differentiation
Evaluating at particular values
Height problems
Max height is reached when velocity $\mathrm{dh} / \mathrm{dt}=0$

4. Sequences

Rules for sequences
Two ways of defining
Formula for nth term
One term and a method for finding each of the following terms
Examples of nth term
Given formula for nth term calculate terms in sequence
Finding nth terms
Look at difference for a linear sequence
Recurrence Relation
Given first term and a formula
$u_{n+1}=u_{n}+3 \quad u_{1}=7$
Called a recurrence relation because successive terms can be found by recurring use of it.
Find terms from a recurrence relation
Find specific terms from recurrence relation e.g. given relation and u_{1} find u_{0}
Form a recurrence relation from a statement
Linear recurrence relations
are of the form $u_{n+1}=m u_{n}+c$ where m and c are constants
Arithmetic series: $m=1$-difference between successive terms is constant
Examples: Deposits and simple payments, simple interest, pay rises - simple increment
Geometric Sequences: c $=0$ - ratio of successive terms is constant
Examples - appreciation, depreciation, compound interest
Finite and infinite Sequences
n tending to infinity notation $\mathrm{n} \rightarrow \infty$ and $1 / \mathrm{n} \rightarrow 0$
Look for terms of form $1 / n$ to see what happens as $n \rightarrow \infty$
if $1 / n \rightarrow 0$ then $1 / n^{2} \rightarrow 0$ even faster - show example
both with numbers and graphically
Convergent - tends to a limit
Finding limits of sequences - some examples and tricks

$$
u_{n}=\frac{2 n+1}{n} \text { and } u_{n}=\frac{n}{n+1}
$$

Finding the sum to infinity of a geometric sequence
Proof
Sum to n terms
Let n tend to infinity
Stipulation $|\mathrm{r}|<1$ i.e. $-1<\mathrm{r}<1$
The linear recurrence relation $u_{n+1}=m u_{n}+c$
with $\mathrm{m} \neq 1$ and $\mathrm{c} \neq 0$
Example of formation
Calculating first few terms
Looking for a trend
Limit
Limit statement if $-1<\mathrm{m}<1$ then the sequence will tend to a limit L .
Derive the limit formula - numerically
then using letters
Finding whether a limit exists
Forming a recurrence relation
Understanding the question with more complicate examples
Answering the outcome - what happens in the long term
Settles out at around
Do not say drops down to or rises up to unless you know the initial value Examples of why this is so
Also advisable to check first few terms of sequence to make sure nothing unusual is happening - do this graphically
Working with recurrence relations
A sequence is given: $u_{n+1}=a u_{n}+b$ where a and b are constants
given u_{1} and u_{2}, find a and b (simultaneous equations)
Can also word it in the form of find m and c
Find limit of sequence
Find difference between a given term and limit.

Unit 2

1.1 Polynomials

Define a polynomial
Define degree
Demonstrate the nested scheme
Proof
Method
Finding the value of the polynomial when $\mathrm{x}=$ some value
Division of polynomials
Synthetic division
Divisor, Quotient, remainder
Meaning of quotient as coefficients
Be careful writing down coefficients of polynomial - watch out for missing powers

Finding the divisor
Divisor is always of the form $\mathrm{x}-\mathrm{h}$
so, dividing by $\mathrm{x}+3$ means a divisor of $(\mathrm{x}-(-3)$)
Synthetic division is with -3
Dividing by ($\mathrm{ax}+\mathrm{b}$)
this is of the form $a(x+b / a)=a(x-(-b / a))$
so, synthetic division is with $-\mathrm{b} / \mathrm{a}$
Then the quotient also has to be divided by a, but not the remainder

- show this with numerical examples first

Remainder Theorem
Extend proof from quadratic to a polynomial of any degree
When a polynomial $f(x)$ is divided by $x-h$ the remainder is $f(h)$
Factor Theorem
If $f(h)=0$ then $x-h$ is a factor of $f(x)$
Finding factors: look at constant terms what are the factors
if last term is 6 then factors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$
Try each in turn
Use $f(h)$ if just trying to find a factor
Use synthetic division if you want to find the quotient as well.
Once you have found a factor, you can complete the factorisation repeat as many times as required, until you have factorised it or got down to a quadratic term which will factorise.
Given $(x+1)$ is a factor of $f(x)=\ldots \ldots . .+a$ find a or variations
Can have two variables and two factors given
Having got a factor and a quadratic expression factorise fully
Solving polynomial equations
Find a factor
Factorise quotient
Solve equation
Showing equation has only one real root - show only one factor and remaining quadratic expression will not factorise - or no solution
Solution of the equation $f(x)=0$ is where the curve cuts the x axis
Solution of the equation $V=f(x)$ and $V=10$ (say) is solving $f(x)=10$

$$
\text { or } \mathrm{f}(\mathrm{x})-10=0
$$

Approximate roots - iteration
Taking a guess - trial and error

1.2 Quadratic Theory

Define quadratic function: $f(x)=a x^{2}+b x+c$
Define quadratic expression: $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$
Define a quadratic equation: $a x^{2}+b x+c=0$
Putting a quadratic expression into standard form $a x^{2}+b x+c$
Solving quadratic equations
graphically
Factorising
when it cannot be factorised completing the square The quadratic formula derivation
Using the quadratic formula a method
Solving using:
factors
completing the square\# the quadratic formula
The discriminant
$\mathrm{b}^{2}-4 \mathrm{ac} \quad>0 \quad$ real and distinct root
$=0$ equal roots
<0 no real roots
graphical illustraion
$b^{2}-4 a c$ discriminates between the roots
which is why it is called the discriminant
For what value of p does the equation $x^{2}-2 x+p=0$ have equal roots, real and distinct, no real roots
Find m given that the equation $x^{2}(m+1) x+9=0$ has equal roots
Show that the roots of the equation $(x-2)(x-3)=k^{2}$ are always real
For what value of t does $t x^{2}+6 x+t=0$ have equal roots
find nature of roots if t lies between these values ($t \neq 0$)
Find range of values of m for which $5 x^{2}-3 m x+5=0$ has two real and distinct roots
Tangents to curves
At point where they meet, simultaneous equations
There is only one solution - i.e. equal roots
Discriminant must $=0$
For tangency the line meets the curve at only one point

Quadratic Inequalities

To solve a quadratic inequality $\mathrm{f}(\mathrm{x})>0$ or $\mathrm{f}(\mathrm{x})<0$
First find the roots of the equation $f(x)=0$
Sketch the function $y=f(x)$ marking on the roots
if inequality is $f(x)>0$ then emphasise curve above axis
if inequality is $f(x)<0$ then emphasise curve below axis
You can then see range of x which is required
With a quadratic inequality - depending on whether x^{2} is positive or negative determines which way up the graph is. You will then want either the region between the roots or outside the roots. depending upon the inequality. Also take care as to whether the inequality is greater than or greater than or equal to etc. as to whether to include the root points.

Differential equations
What is a differential equation
Look at $y=4 x^{2}$ then $d y / d x=8 x$
$d y / d x=8 x$ is a differential equation
$y=4 x^{2}+c$ is the general solution of the d.e.
$\mathrm{y}=4 \mathrm{x}^{2}-6$ is a particular solution
Family of curves (graphical example
Simple cases of finding general solution and particular solutions
Integration
$3 x^{2}-4 x+c$ is called the anti-derivative of $6 x-4$
since $d / d x\left(3 x^{2}-4 x+c\right)=6 x-4$
It comes from $6 x-4$ by undoing the differentiation
Leibnitz invented useful notation for anti-derivatives
$\int 6 x-4 d x=3 x^{2}-4 x+c$
In general $\int f(x) d x=F(x)+c$ means $F^{\prime}(x)=f(x)$
Process of calculating an anti-derivative is called integration The anti-derivative $\mathrm{F}(\mathrm{x})$ is called the integral c is the constant of integration $\mathrm{F}(\mathrm{x})$ is obtained from $\mathrm{f}(\mathrm{x})$ by integrating with respect to x

Useful rules

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad(\mathrm{n} \neq-1) \\
& \int f(x)+g(x) d x=\int f(x) d x+\int g(x) d x \\
& \int k f(x) d x=k \int f(x) d x \text { where } \mathrm{k} \text { is a constant }
\end{aligned}
$$

Methods (Templates)
simple powers of $x \quad x^{2}$
simple powers of x with multipliers $3 \mathrm{x}^{2}$
Simple sums $3 x^{2}-2$
Simple trinomials (quadratics etc) $\quad 5 x^{2}-3 x+4$
Brackets squared
$(2 x-1)^{2}$
Pair of brackets
$(2 x+1)(x-3)$
Negative power
x^{-3}
Fractional power
Negative fractional power
$\mathrm{x}^{2 / 3}$
Negative power with constant
$\mathrm{x}^{-1 / 2}$
Fractional power with constant
$2 \mathrm{x}^{-3}$
Negative fractional power with constant

$$
5 x^{2 / 3}
$$

Fraction form with power
$3 x^{-1 / 2}$
$\frac{1}{x^{3}}$
Constant multipliers

$$
\frac{6}{x^{2}} \text { or } \frac{1}{2 x^{3}}
$$

Root and further forms (see further in Ex 2B p. 128/9)
NB constant multipliers should be both + and -
Finding the equation $y=f(x)$ from $d y / d x$ and a point on the curve

Rates of Change

Solving Differential equations
Finding general solution
Finding particular solution
Using solution to find a value at a particular time.

Area under a curve

Derivation of formula that: $A(x)=\int f(x) d x$
The area between the curve $\mathrm{f}(\mathrm{x})$ and the x -axis
bounded by lines $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$
is given by $\int_{a}^{b} f(x) d x$
Show by sketches areas associated with a definite integral
Writing down an integral to describe a shaded area

Area under a curve - formula - definite integrals

The area under the curve $y=f(x)$ from $x=a$ and $x=b$
is given by $\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=[F(b)]-[F(a)]$
$\int_{a}^{b} f(x) d x$ is called a definite integral with lower limit a and upper limit b
Evaluating definite integrals
practice examples
Alternative forms e.g. Find a >0 if $\int_{0}^{a} 2 x+2 d x=8$

Area under a curve - calculations

Looking at areas above and below the x axis
Integration for areas below the axis will give negative values for area
(since $h>0$ and $f(x)<0$)
Integration for areas above the axis will give positive values for area
Since area cannot be negative - ignore the negative sign
The sign merely indicates that the area is below the x axis
Cannot find areas that go above and below the x axis in one integration
Need to break it down into separate sections above and below then add together

Area between two curves

Take area under lower curve from area under larger curve
$\int_{a}^{b} f(x)-g(x) d x$
Consider case when part of area is below the x axis
No difference - here the signs take care of themselves

3.1 Calculations in 2D and 3D

Omit this section

3.2 Compound Angle formulae

Related angles
Alternative definitions of $\sin \mathrm{A}, \cos \mathrm{A}, \tan \mathrm{A}$ in terms of $\mathrm{x}, \mathrm{y}, \mathrm{r}$ $\sin (-A)=-y / r=-\sin$ A Use also the ASTC diagram
$\sin (90-A)=x / r=\cos A$
$\sin (180-A)=y / r=\sin A$
$\cos (-\mathrm{A})=\mathrm{x} / \mathrm{r}=\cos \mathrm{A}$
$\cos (90-A)=y / r=\sin A$
$\cos (180-\mathrm{A})=-\mathrm{x} / \mathrm{r}=-\cos \mathrm{A}$

Sin-cos-tan formula
$\frac{\sin A}{\cos A}=\frac{\frac{y}{r}}{\frac{x}{r}}=\frac{y}{x}=\tan A$
$\sin ^{2} A+\cos ^{2} A=\frac{y^{2}}{r^{2}}+\frac{x^{2}}{r^{2}}=\frac{y^{2}+x^{2}}{r^{2}}=1$ (Pythagoras Theorem)
also reminder π radians $=180^{\circ}$
Some practice reminders
Reminders of exact value table for radians and degrees sin/cos/tan - 30/45/60
p. 153 useful examples to practice
$\operatorname{Cos}(A+B)$ and $\cos (A-B)$
Proof of $\operatorname{Cos}(A+B)$
To prove for $\cos (A-B)$ replace B with $-B$
Prove simple identities
Using triangles to find expressions for $\operatorname{Cos}(\mathrm{A}+\mathrm{B})$ using $\sin \mathrm{A}, \sin \mathrm{B}, \cos \mathrm{A}, \cos \mathrm{B}$ finding expressions like cos 75 using $30+45$

$\sin (A+B)$ and $\sin (A-B)$

prove using $\sin (\mathrm{A}+\mathrm{B})=\cos (90-(\mathrm{A}+\mathrm{B}))$
Hence result, same for $\sin (A-B)$
Examples showing
simplification $\quad \sin (\pi+\theta)$
show that $\quad \sin (\theta+\pi / 6)=1 / 2(\cos \theta+\sqrt{ } 3 \sin \theta)$
Proving identities

Sin 2A and cos 2A

Prove by putting $\mathrm{B}=\mathrm{A}$
Given $\sin \mathrm{A}$ find $\cos \mathrm{A}$ - using a right angled triangle and Pythagoras
Given $\tan \theta$ find $\sin 2 \theta$ etc
Simplify $2 \sin 15 \cos 15$
More proofs
Solving equations containing $\sin 2 \mathrm{~A}$ and $\cos 2 \mathrm{~A}$ terms
Replace $\sin 2 \mathrm{~A}$ with $2 \sin \mathrm{~A} \cos \mathrm{~A}$
gives common factor solution
Replace $\cos 2 \mathrm{~A}$ with $2 \cos ^{2} \mathrm{~A}-1$ if remaining term is \cos
Replace $\cos 2 \mathrm{~A}$ with $1-2 \sin ^{2} \mathrm{~A}$ if remaining term is sin gives a quadratic in \sin or cos

Sketching graphs

$$
\begin{aligned}
& y=a \sin n x \\
& a \text { is amplitude - gives max and minimum values } \\
& \mathrm{n} \text { gives number of cycles (waveforms) in } 0 \leq \mathrm{x} \leq 2 \pi \\
& \text { period is } 2 \pi / n \\
& \text { The graph of } \mathrm{y}=\cos (\mathrm{x}-\pi / 4) \\
& \text { One cycle of cosine wave has period of } 2 \pi \\
& \text { Intersection with } \mathrm{x} \text { axis when } \mathrm{y}=0 ; \cos (\mathrm{x}-\pi / 4)=0 \\
& \mathrm{x}-\pi / 4=\pi / 2 \text { or } 3 \pi / 2 \text { etc } \\
& \text { Intersection with } \mathrm{y} \text { axis when } \mathrm{x}=0 \text {; i.e. } \mathrm{y}=\cos \pi / 4=0.7 \text { approx } \\
& \text { Max and min values: } 1 \text { when } x-\pi / 4=0 \text { or } 2 \pi \\
& \text { i.e. } x=\pi / 4 \text { or } x=9 \pi / 4 \\
& \text { Min value }=-1 \text { when } x-\pi / 4=\pi \text {, } 3 \pi \text { etc. } \\
& \text { i.e. when } x=5 \pi / 4, \ldots \text {. } \\
& \text { Note the graph of } \mathrm{y}=\cos (\mathrm{x}-\pi / 4) \text { is the same as } \cos \mathrm{x} \\
& \text { but shifted along } \pi / 4 \text { to the right (Recall related graphs }-\mathrm{f}(\mathrm{x}-\mathrm{a}) \text {) } \\
& \text { This shift is called the phase angle } \\
& \text { In this case the phase angle is } \pi / 4 \\
& \text { Sketch graphs with different phase angles from equations } \\
& \text { Writing down shift and direction from equation } \\
& \text { Writing down equation from the graph and noted points }
\end{aligned}
$$

4 The circle

Circle centre ($\mathbf{0}, \mathbf{0}$) and radius $\mathbf{r} x^{2}+y^{2}=r^{2}$
Write down centre and radius from equation
Write down equation centre $(0,0)$ and given radius (say 7)
Find the equation of circle, centre O passing through given point (say $(3,4)$)
Check that a point lies on a circle
Find whether a point lies inside, on or outside a circle (distance formula)
Circle centre (\mathbf{a}, \mathbf{b}) and radius $\mathbf{r}(x-a)^{2}+(y-b)^{2}=r^{2}$
Write down centre and radius from equation
Write down equation from iven centre $(5,7)$ say and given radius (say 3)
Find the equation of circle, centre $(2,-1)$ passing through given point (say $(3,4)$)
Check that a point lies on a circle
Find whether a point lies inside, on or outside a circle (distance formula)
Right angles in circles - lie on a diameter
Showing an angle is a right angle - use perpendicular gradients
Find equation of a circle passing through 3 points
(2 chords) - perpendicular bisector - intersection - centre find radius, find equation
If three points form a right angled triangle, then hypotenuse is the diameter so mid point is the centre, calculate radius write down equation

Finding if two circles touch - distance between centres = sum of radii
Find if two circles intersect - distance between centres < sum of radii
Find if two circles do not touch - distance between centres > sum of radii
Shortest distance from a point to a circle lies on line from point to centre - find distance to centre then subtract radius

The general equation of a circle $x^{2}+y^{2}+2 g x+2 f y+c=0$
work this through from $(x-a)^{2}+(y-b)^{2}=r^{2}$
using numbers first and then with letters
completing the square
Centre is ($-\mathrm{g},-\mathrm{f}$) and radius is $\sqrt{g^{2}+f^{2}-c}$ provided that $g^{2}+f^{2}-c>0$
Note coefficients of x^{2} and y^{2} must be 1
NB to write down centre
halve the x coeffcient and change the sign
halve the y coefficient and change the sign

Practice

Does a certain equation represent circle Coefficients of x^{2} and y^{2} must be 1

$$
g^{2}+f^{2}-c>0
$$

Given the equation of a circle and a point.
Find the point diametrically opposite
Need centre point
Use triangles
Finding points of intersection of a line and a circle
Simultaneous equations
No real roots - line does not touch circle
Equal roots - line is a tangent to circle
Real and distinct roots - line intersects circle at two points
The shortest distance between two circles (not intersecting)
lies on a line joining their centres
Find distance between two centres and subtract the two radii.
Proving that circles touch externally
Proving that circles touch internally
Finding locus of a point given a condition
Tangents to a circle
Finding equation of a tangent to circle
given equation of circle and point find centre, find gradient of line centre to point find gradient of tangent (perpendicular) Find equation (point \& gradient known)
Find length of the tangent from a point to a given circle Find centre of circle
Find distance from centre to point
Find radius
Draw a diagram
Use Pythagoras to find length of tangent
Find point of intersection of two tangents to a circle
(equation given and tangency points given)
Find centre
Find gradient of lines joining centre to points
Find gradients of tangents (perpendicular)
Find equations of tangents (point and gradient known)
Find intersection using simultaneous equations
Intersection of lines and circle
Using discriminant
Finding k or c in an equation if a line is a tanent to a circle

Unit 3

1
 Vectors

Definition of a vector
magnitude and direction
Definition of a scalar
Examples of each
Directed Line segments
A vector \boldsymbol{u} can be represented in magnitude and direction
Note printed convention is usually bold type (or underlined or bold italic)
by a directed line segment $\overrightarrow{A B}$
Note that a directed line segment does not indicate position

- only magnitude and direction

Components of a vector in 2 dimensions
displacement in x direction then displacement in y direction
Can be written as a vector $\overrightarrow{A B}=\binom{2}{4}$ i.e. 2 in x direction and 4 in y direction
Draw directed line segments
Write down in vector notation a drawn directed line segment
Find co-ordinates of Q given point P and vector $\overrightarrow{P Q}$
Magnitude of a vector in 2 dimensions
Define magnitude as length and use notation $|\boldsymbol{u}|$
Use Pythagoras

$$
\underline{u}=\binom{-9}{12} \quad|u|^{2}=(-9)^{2}+(12)^{2} \quad|u|^{2}=225 \quad|u|=15
$$

Calculating lengths of vectors - using magnitude formula

Vectors in 3 dimensions

Example with cuboid
Components $-\mathrm{x}, \mathrm{y}$ and z components
In component form $\overrightarrow{A B}=\left(\begin{array}{l}x-\text { component } \\ y-\text { component } \\ z-\text { component }\end{array}\right)$
In general $\overrightarrow{A B}=\left(\begin{array}{c}x_{B}-x_{A} \\ y_{B}-y_{A} \\ z_{b}-z_{A}\end{array}\right)$ this is called a column vector
Example if P is $(6,2,0)$ and Q is $(8,-3,-1)$ then $\overrightarrow{P Q}=\left(\begin{array}{c}8-6 \\ -3-2 \\ 1-0\end{array}\right)=\left(\begin{array}{c}2 \\ -5 \\ 1\end{array}\right)$
Magnitude of a 3D vector if $\boldsymbol{u}=\overrightarrow{A B}$ then

$$
|\mathrm{u}|=\mathrm{AB}=\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}+\left(z_{B}-z_{A}\right)^{2}}
$$

also known as the distance formula for 3 dimensions

Write down components as a column vector Calculate length of a vector
If two vectors are equal then corresponding components are equal
Addition and subtraction of vectors
Commonsense solution - consider aeroplane and crosswind
Vectors are added nose to tail
Triangle rule for adding vectors
$\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$ this is called the resultant vector
Simply add components
Finding length of resultant vector as previous
The negative of a vector
Subtracting two vectors
add a negative vector
Multiplying by a number - a scalar
kv has same direction if k positive
kv has opposite direction if k negative
In component form multiply components
Evaluating simple vector expressions $2 \mathrm{p}+\mathrm{q}$ given p and q
Solving simple vector equations or finding the scalar
Position vectors
Definition
A useful result $\overrightarrow{A B}=\underline{b}-\underline{a}$

Collinear points

Prove three points are collinear
Showing that vectors are scalar multiples of each other
Points dividing lines in given ratios
If one vector is a scalar multiple of another then they are parallel
If they share a common point then the points are collinear Calculating ratio in which a point divides a line
Position vector of midpoint of $A B$

Prove formula $m=\frac{1}{2}(a+b)$
Write down co-ordinates of mid-points of lines joing A and B Points dividing lines in given ratios
e.g. P divides line $A B$ in ratio $3: 2 \quad A(2,-3,4)$ and $B(12,7,-1)$ Find co-ordinates of P

$$
\begin{aligned}
& \frac{A P}{P B}=\frac{3}{2} \quad \overrightarrow{A P}=\frac{3}{2} \overrightarrow{P B} \quad 2 \overrightarrow{A P}=3 \overrightarrow{P B} \\
& 2(p-a)=3(p-b) \\
& p=\frac{1}{5}(2 a+3 b)=\left(\begin{array}{l}
8 \\
3 \\
1
\end{array}\right)
\end{aligned}
$$

Deal also with dividing externally
Unit vectors $\mathrm{i}, \mathrm{j}, \mathrm{k}$
unit vector has magnitude of 1
unit vectors in directions $\mathrm{Ox}, \mathrm{Oy}, \mathrm{Oz}$ denoted by
$i=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \quad j=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \quad k=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
every vector can be expressed in terms of unit vectors
$\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})=a\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+b\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+c\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\mathrm{a} \boldsymbol{i}+\mathrm{b} \boldsymbol{j}+\mathrm{c} \boldsymbol{k}$

The vectors $\mathrm{I}, \mathrm{j}, \mathrm{k}$ form a basis for 3 dimensional space Write down position vectors of a point $\mathrm{A}(1,2,8)$ in form $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ and $a \boldsymbol{i}+\mathrm{b} \boldsymbol{j}+\mathrm{c} \boldsymbol{k}$
Write in component form $2 \boldsymbol{i}-2 \boldsymbol{k}$
Given $\boldsymbol{u}=2 \boldsymbol{i}+3 \boldsymbol{j}+7 \mathbf{k}$ and $\boldsymbol{v}=\boldsymbol{i}-4 \boldsymbol{j}-2 \mathbf{k}$
express $\mathrm{u}+\mathrm{v}$ and $\mathrm{u}-\mathrm{v}$ in component form and find $|\mathrm{u}+\mathrm{v}|$ etc
Calculating lengths of vectors
Given a vector ai $+1 / 2 \boldsymbol{j}-1 / 2 \boldsymbol{k}$ is a unit vector - calculate a length of vector must be 1
$\mathrm{ai}+\mathrm{b} \boldsymbol{j}+1 / 2 \boldsymbol{k}$ is a unit vector, find relationship between a and b
Prove two vectors are parallel (given in form $\mathrm{a}+\mathrm{b} \boldsymbol{j}+\mathrm{c} \boldsymbol{k}$) Show that they are scalar multiples
Find the resultant of three vectors acting on a point (add them all up) Find its magnitude
Given vectors p and q in component form $\mathrm{a} \boldsymbol{i}+\mathrm{b} \boldsymbol{j}+\mathrm{c} \boldsymbol{k}$ Find in terms of $\mathrm{I}, \mathrm{j}, \mathrm{k}$ the position vector of the point which divides PQ in the ratio 2:1

Scalar Product of two vectors
Multiplication of two vectors
Example of occurrence - Force x distance
$|\mathrm{f}| \mathrm{x} \mid \cos \theta$
Multiplying two vectors together - product is a real number (scalar)
Hence the name scalar product.
Definition.
The scalar product of two vectors a and b, denoted by a $\bullet b$ is
$\mathrm{a} \bullet \mathrm{b}=|\mathrm{a}||\mathrm{b}| \cos \theta$ (providing neither a nor b is zero)
Component form of a.b
Derive using cosine rule
a.b $=\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{z}_{1} \mathrm{z}_{2}$
also we have
$\mathrm{a} . \mathrm{b}=|\mathrm{a}||\mathrm{b}| \cos \theta$
The sign of a.b is determined by the size of θ
$0<\boldsymbol{\theta}<90 \quad$ a.b >0
$\boldsymbol{\theta}=90 \quad$ a.b $=0$
$90<\boldsymbol{\theta}<180$ a.b <0
θ is the angle between the vectors when they are pointing out from the vertex.
Calculating a.b (Ex 8 p. 209)
Calculating angle between two vectors
Using
a.b $=\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{z}_{1} \mathrm{z}_{2}$
$\mathrm{a} . \mathrm{b}=|\mathrm{a}||\mathrm{b}| \cos \theta$
then $\cos \theta=\frac{a \cdot b}{|a||b|}=\frac{x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}}{|a||b|}$ providing $\mathrm{a}, \mathrm{b} \neq 0$
Note then that a.b $=0 \leftrightarrow \cos \theta=0$ i.e. $\theta=90^{\circ}$
i.e. a is perpendicular to b since we assumed $a \neq 0$ and $b \neq 0$

Calculating the angle between two vectors
Check the direction of the vectors for θ
Evaluate scalar product
To show that two vectors are perpendicular show that the scalar product is 0
Given two vectors are perpendicular find the value of a coefficient (designated as p)
Some Results using scalar products
a. $\mathrm{a}=\mathrm{a}^{2}$
$\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=1$
i.j $=\mathrm{j} . \mathrm{k}=\mathrm{i} . \mathrm{k}=0$

Distributive Law a. $(\mathrm{b}+\mathrm{c})=\mathrm{a} . \mathrm{b}+\mathrm{a} . \mathrm{c}$
Results from distributive law

$$
\text { if } \mathrm{a} .(\mathrm{b}-\mathrm{c})=0 \text { then } \mathrm{a} \text { is perpendicular to } \mathrm{b}-\mathrm{c}
$$

2 Further differentiation and Integration

Derivatives of $\sin \mathrm{x}$ and $\cos \mathrm{x}$
Use the derived function graph to deduce this
Use the definition of the derivative
We must work in radians for this to be true
$d / d x(\sin x)=\cos x \quad d / d x(\cos x)=-\sin x$
Differentiate sin and cos expressions
Find gradient of tangent to a function involving sin and cos
Apply to maximum and minimum values
Stationary points
Stationary values
Differentiation of mixed expressions trig and algebraic (Ex 2B p. 222)
Chain Rule for algebraic functions
Look at patterns - intuitive
Use chain rule notation
$d y / d x=d y / d u \times d u / d x$
Practice using the chain rule
Chain rule for differentiating trig functions
Use the same way
$d / d x \sin (\ldots .)=.\cos (\ldots .). d / d x(\ldots .$.
d.dx $\cos (\ldots .)=.-\sin (\ldots). d / d x(\ldots$.

Methods (Templates) also applies to $\cos \mathrm{x}$
$\sin 2 \mathrm{x}$
$\sin (2 x-3)$
$\sin \left(x^{2}-1\right)$
$\sqrt{ } \sin \mathrm{x}$
$\frac{1}{\sin x} \quad \frac{3}{\sin x} \quad \frac{5}{2 \sin x}$
$\sin ^{2} x, \quad \sin ^{4} x$
$(1+\sin x)^{2}$
$\sqrt{ }(1+\sin x)$
$1-2 \sin ^{2} \mathrm{x} \quad 2 \cos ^{2} \mathrm{x}-1 \quad 2 \sin \mathrm{x} \cos \mathrm{x}$
$\frac{1}{x}-\frac{1}{\sqrt{\sin x}}$
Further Integration
Standard Integral
$d / d x(a x+b)^{n+1}=(n+1)(a x+b)^{n}$
so $\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{(n+1) a}+c$ where $\mathrm{a}, \mathrm{b}, \mathrm{n}$ are constants, $\mathrm{a} \neq 0$ and $\mathrm{n} \neq 1$
Integration practice of standard functions
bracket will only contain linear functions
Integrals of trig functions

$$
\begin{aligned}
& \int \cos x d x=\sin x+c \quad \int \sin x d x=-\cos x+c \\
& \int \cos (a x+b) d x=-\frac{\sin (a x+b)}{a}+c \\
& \int \sin (a x+b) d x=\frac{\cos (a x+b)}{a}+c
\end{aligned}
$$

Definite Trig Integrals
Evaluate showing area - working in radians
Calculate areas of shaded regions
Take care with areas below the x axis
Calculate areas between $y=\cos x$ and $y=\sin x$ between 0 and $5 \pi / 4$
Split into two sections

3 Exponential and Logarithmic Functions

Growth and decay
Using powers to describe and calculate growth and decay
Writing down growth and decay functions
A special exponential function - the number e
Derivation of where e comes from
limit of $\left(1+\frac{1}{n}\right)^{n}$ as n tends to infinity
Show computer simulation
limit exists denoted by letter e and is approx: 2.718281828
$f(x)=e^{x}$ is known as the exponential function base e
often denoted as $\exp (\mathrm{x})$
Can you find a number a such that $f(x)=a^{x}$
and the derived function $\mathrm{f}^{\prime}(\mathrm{x})$ are the same

The number is in fact $\mathrm{a}=\mathrm{e}$
Using e on the calculator
Calculating functions involving e to some powers
(some examples on page 240 Ex 3)
Linking exponential to the log function

$$
\begin{aligned}
& y=a^{x} \Leftrightarrow x=\log _{a} y \\
& \text { or } y=a^{x} \Leftrightarrow \log _{a} y=x \\
& \text { and also } 1=\mathrm{a}^{0} \Leftrightarrow \log _{\mathrm{a}} 1=0 \\
& \text { and } \quad \mathrm{a}=\mathrm{a}^{1} \Leftrightarrow \quad \log _{a} \mathrm{a}=1
\end{aligned}
$$

Writing equations with logs in exponential form
Writing equations with exponentials in log form
Solving log equations by expressing in exponential form

$$
\log _{x} 7=1 \quad \log _{2} x=3 \quad \log _{4} 1=x
$$

Finding values of logarithms
$\log _{3} 27$
Using the log key on your calculator
\log is \log base 10 or $\log _{10}$
\ln is log base e or loge known as natural logs
Do not confuse them
Solve $\log _{10} \mathrm{X}=2$
Rules of logarithms

$$
\begin{aligned}
& \log _{a} x y=\log _{a} x+\log _{a} y \\
& \log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y \\
& \log _{a} x^{p}=p \log _{a} x
\end{aligned}
$$

Prove these from rules of indices - see proof on page 242
Simplify logs (all with same base) $\log 7+\log 2$
Simplify logs with given base and evaluate $\log _{4} 18-\log _{4} 9$
see page 242 for examples of these
Solving log equations page 243
Solving exponential equations
Solve $5^{x}=4-$ take log base 10 of both sides
Example with compound interest formula

$$
\mathrm{A}=\mathrm{PR}^{\mathrm{n}} \quad \text { say } 1.08^{\mathrm{n}}=2.5 \quad \mathrm{n}=11.91 \text { (again using log base } 10 \text {) }
$$

When growth or decay base is e
then it is simpler to take logs to the base e of both sides
e.g. $\mathrm{e}^{1.24 \mathrm{t}}=125 \quad 1.24 \mathrm{t} \log _{\mathrm{e}} \mathrm{e}=\log _{\mathrm{e}} 125$
since $\log _{e} e$ is 1 then $t=\log _{e} 125 / 1.24 \quad t=3.89$
Experiment \& Theory
$y=a x^{n}$ and $y=a b^{x} \quad$ could both model similar graphs
Can solve dilemna by taking logs
$y=a x^{n}$
$\log y=\log a x^{n}=\log a+\log x^{n}$
$\log y=\log a+n \log x$
$\log y=n \log x+\log a$
This is like $\mathrm{Y}=\mathrm{mX}+\mathrm{c}$ where $\mathrm{Y}=\log \mathrm{y}$ and $\mathrm{X}=\log \mathrm{x}$
For $\mathrm{y}=\mathrm{ab} \mathrm{b}^{\mathrm{x}}$
$y=a b^{x}$
$\log y=\log a b^{x}$
$\log y=\log a+\log b^{x}$
$\log y=\log a+x \log b$
$\log y=x \log b+\log a$
This is like $\mathrm{Y}=\mathrm{mx}+\mathrm{c}$ where $\mathrm{Y}=\log \mathrm{y}$
The graph of each is a straight line, by drawing the line, m and c can be found

A plot of $\log y$ against $\log x$ will result in an equation of the form $y=a x^{n}$
A plot of $\log y$ against x will result in an equation of the form $y=a b^{x}$
Some examples with graphs

4. The Wave function $a \cos x+b \sin x$

Investigating the graph $y=\cos x+\sin x$ for $0 \leq x \leq 2 \pi$
Use graph program
Graph is like $y=\cos x$ but amplitude is $\sqrt{ } 2$ and it is displaced $\pi / 4$ to the right
i.e. $y=\sqrt{ } 2 \cos (x-\pi / 4)$

Check using compound angle formula that

$$
\sqrt{2} \cos (x-\pi / 4)=\cos x+\sin x
$$

Expressing $\mathrm{a} \cos \mathrm{x}+\mathrm{b} \sin \mathrm{x}$ in the form $\mathrm{R} \cos (\mathrm{x} \pm \alpha)$
often the greek letter α is used
Reminder of compound angle formula $\sin (\mathrm{A} \pm \mathrm{B})$ and $\cos (\mathrm{A} \pm \mathrm{B})$
Proof:
Let $a \underline{\cos x}+b \underline{\sin x}=R(\cos (x-\alpha)=R \underline{\cos x} \cos \alpha+R \underline{\sin x} \sin \alpha$ Equating coefficients of $\cos x$ and $\sin x$ we find:

$$
\begin{aligned}
& \mathrm{R} \cos \alpha=\mathrm{a} \\
& \mathrm{R} \sin \alpha=\mathrm{b}
\end{aligned}
$$

Squaring and adding

$$
\begin{aligned}
& R^{2} \cos ^{2} \alpha+R^{2} \sin ^{2} \alpha=a^{2}+b^{2} \\
& R^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=a^{2}+b^{2} \\
& R^{2}=a^{2}+b^{2} \\
& R=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Dividing (we want sin divided by cos to get tan)

$$
\begin{aligned}
& \frac{R \sin \alpha}{R \cos \alpha}=\frac{b}{a} \\
& \tan \alpha=\frac{b}{a}
\end{aligned}
$$

The quadrant of a is found from the signs of $\cos \alpha$ and $\sin \alpha$
So $\mathrm{a} \cos \mathrm{x}+\mathrm{b} \sin \mathrm{x}=\mathrm{R} \cos (\mathrm{x}-\alpha)$ where $R=\sqrt{a^{2}+b^{2}}$ and $\tan \alpha=\frac{b}{a}$
In practice do not use the formula
since there are 4 possible forms we could use.
$R \cos (x \pm \alpha)$ and $R \sin (x \pm \alpha)$
Work it out for each one in turn from first principles
Examples of use
Maxima and minima of $a \cos x+b \sin x$
Finding max and min and corresponding value for x
Given in form $\mathrm{y}=2 \sin (\mathrm{x}+75)$
Given in form $12 \cos x+5 \sin x$
More involved form where $f(x)=1+\sqrt{2} \cos x-\sqrt{2} \sin x$
Solving Trig equations using the wave function
Solve $\sin 2 x+3 \cos 2 x+1=0$ for $0 \leq x \leq 180^{\circ}$
Express in form $\mathrm{R} \cos (2 \mathrm{x}-\alpha)$
which gives $\sqrt{ } 10 \cos \left(2 x-18^{\circ}\right)=-1$
$x=63$ or 135 to nearest degree
You will be told which form to use in the question.

